isolated$41062$ - перевод на арабский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

isolated$41062$ - перевод на арабский

THEOREM
Isolated zeros theorem; Isolated zeroes theorem

isolated      
adj. منعزل, متوحد, معزول, مفروز, مفصول, مبعد, متقوقع
acropachy         
ISOLATED CONGENITAL DIGITAL CLUBBING IS A RARE GENODERMATOSIS DISORDER CHARACTERIZED BY ENLARGEMENT OF THE TERMINAL SEGMENTS OF FINGERS AND TOES WITH THICKENED NAILS WITHOUT ANY OTHER ABNORMALITY
Thyroid acropachy; Isolated Congenital Nail Clubbing
ثِخَنُ النِّهايات
acropachy         
ISOLATED CONGENITAL DIGITAL CLUBBING IS A RARE GENODERMATOSIS DISORDER CHARACTERIZED BY ENLARGEMENT OF THE TERMINAL SEGMENTS OF FINGERS AND TOES WITH THICKENED NAILS WITHOUT ANY OTHER ABNORMALITY
Thyroid acropachy; Isolated Congenital Nail Clubbing
‎ ثِخَنُ النِّهايات‎

Определение

Anencephalous
·adj Without a brain; brainless.

Википедия

Identity theorem

In real analysis and complex analysis, branches of mathematics, the identity theorem for analytic functions states: given functions f and g analytic on a domain D (open and connected subset of R {\displaystyle \mathbb {R} } or C {\displaystyle \mathbb {C} } ), if f = g on some S D {\displaystyle S\subseteq D} , where S {\displaystyle S} has an accumulation point, then f = g on D.

Thus an analytic function is completely determined by its values on a single open neighborhood in D, or even a countable subset of D (provided this contains a converging sequence). This is not true in general for real-differentiable functions, even infinitely real-differentiable functions. In comparison, analytic functions are a much more rigid notion. Informally, one sometimes summarizes the theorem by saying analytic functions are "hard" (as opposed to, say, continuous functions which are "soft").

The underpinning fact from which the theorem is established is the expandability of a holomorphic function into its Taylor series.

The connectedness assumption on the domain D is necessary. For example, if D consists of two disjoint open sets, f {\displaystyle f} can be 0 {\displaystyle 0} on one open set, and 1 {\displaystyle 1} on another, while g {\displaystyle g} is 0 {\displaystyle 0} on one, and 2 {\displaystyle 2} on another.